Moved metrics section [skip ci]

This commit is contained in:
Andrew Kane
2021-07-26 14:09:57 -07:00
parent cc0024a9f9
commit 7b4900afb1

View File

@@ -75,6 +75,47 @@ Perform cross-validation
model.cv(&data, 5);
```
## Parameters
Set parameters - default values below
```rust
model.loss = 0; // loss function
model.factors = 8; // number of latent factors
model.threads = 12; // number of threads used
model.bins = 25; // number of bins
model.iterations = 20; // number of iterations
model.lambda_p1 = 0; // coefficient of L1-norm regularization on P
model.lambda_p2 = 0.1; // coefficient of L2-norm regularization on P
model.lambda_q1 = 0; // coefficient of L1-norm regularization on Q
model.lambda_q2 = 0.1; // coefficient of L2-norm regularization on Q
model.learning_rate = 0.1; // learning rate
model.alpha = 0.1; // importance of negative entries
model.c = 0.0001; // desired value of negative entries
model.nmf = false; // perform non-negative MF (NMF)
model.quiet = false; // no outputs to stdout
```
### Loss Functions
For real-valued matrix factorization
- 0 - squared error (L2-norm)
- 1 - absolute error (L1-norm)
- 2 - generalized KL-divergence
For binary matrix factorization
- 5 - logarithmic error
- 6 - squared hinge loss
- 7 - hinge loss
For one-class matrix factorization
- 10 - row-oriented pair-wise logarithmic loss
- 11 - column-oriented pair-wise logarithmic loss
- 12 - squared error (L2-norm)
## Metrics
Calculate RMSE (for real-valued MF)
@@ -119,47 +160,6 @@ Calculate AUC (for one-class MF)
model.auc(&data, transpose);
```
## Parameters
Set parameters - default values below
```rust
model.loss = 0; // loss function
model.factors = 8; // number of latent factors
model.threads = 12; // number of threads used
model.bins = 25; // number of bins
model.iterations = 20; // number of iterations
model.lambda_p1 = 0; // coefficient of L1-norm regularization on P
model.lambda_p2 = 0.1; // coefficient of L2-norm regularization on P
model.lambda_q1 = 0; // coefficient of L1-norm regularization on Q
model.lambda_q2 = 0.1; // coefficient of L2-norm regularization on Q
model.learning_rate = 0.1; // learning rate
model.alpha = 0.1; // importance of negative entries
model.c = 0.0001; // desired value of negative entries
model.nmf = false; // perform non-negative MF (NMF)
model.quiet = false; // no outputs to stdout
```
### Loss Functions
For real-valued matrix factorization
- 0 - squared error (L2-norm)
- 1 - absolute error (L1-norm)
- 2 - generalized KL-divergence
For binary matrix factorization
- 5 - logarithmic error
- 6 - squared hinge loss
- 7 - hinge loss
For one-class matrix factorization
- 10 - row-oriented pair-wise logarithmic loss
- 11 - column-oriented pair-wise logarithmic loss
- 12 - squared error (L2-norm)
## Reference
Specify the initial capacity for a matrix