Changed pattern for fitting models

This commit is contained in:
Andrew Kane
2021-10-16 16:50:53 -07:00
parent 0dd202ea7f
commit b87210c6fe
6 changed files with 181 additions and 187 deletions

View File

@@ -23,11 +23,10 @@ data.push(0, 2, 3.5);
data.push(1, 1, 4.0);
```
Create a model
Fit a model
```rust
let mut model = libmf::Model::new();
model.fit(&data);
let model = libmf::Model::params().fit(&data);
```
Make predictions
@@ -64,7 +63,7 @@ let model = libmf::Model::load("model.txt");
Pass a validation set
```rust
model.fit_eval(&train_set, &eval_set);
let model = libmf::Model::params().fit_eval(&train_set, &eval_set);
```
## Cross-Validation
@@ -72,7 +71,7 @@ model.fit_eval(&train_set, &eval_set);
Perform cross-validation
```rust
model.cv(&data, 5);
libmf::Model::params().cv(&data, 5);
```
## Parameters
@@ -80,20 +79,21 @@ model.cv(&data, 5);
Set parameters - default values below
```rust
model.loss = 0; // loss function
model.factors = 8; // number of latent factors
model.threads = 12; // number of threads used
model.bins = 25; // number of bins
model.iterations = 20; // number of iterations
model.lambda_p1 = 0; // coefficient of L1-norm regularization on P
model.lambda_p2 = 0.1; // coefficient of L2-norm regularization on P
model.lambda_q1 = 0; // coefficient of L1-norm regularization on Q
model.lambda_q2 = 0.1; // coefficient of L2-norm regularization on Q
model.learning_rate = 0.1; // learning rate
model.alpha = 0.1; // importance of negative entries
model.c = 0.0001; // desired value of negative entries
model.nmf = false; // perform non-negative MF (NMF)
model.quiet = false; // no outputs to stdout
libmf::Model::params()
.loss(0) // loss function
.factors(8) // number of latent factors
.threads(12) // number of threads used
.bins(25) // number of bins
.iterations(20) // number of iterations
.lambda_p1(0.0) // coefficient of L1-norm regularization on P
.lambda_p2(0.1) // coefficient of L2-norm regularization on P
.lambda_q1(0.0) // coefficient of L1-norm regularization on Q
.lambda_q2(0.1) // coefficient of L2-norm regularization on Q
.learning_rate(0.1) // learning rate
.alpha(0.1) // importance of negative entries
.c(0.0001) // desired value of negative entries
.nmf(false) // perform non-negative MF (NMF)
.quiet(false); // no outputs to stdout
```
### Loss Functions
@@ -172,6 +172,24 @@ let mut data = libmf::Matrix::with_capacity(3);
- [LIBMF: A Library for Parallel Matrix Factorization in Shared-memory Systems](https://www.csie.ntu.edu.tw/~cjlin/papers/libmf/libmf_open_source.pdf)
## Upgrading
### 0.2.0
Use
```rust
let model = libmf::Model::params().factors(20).fit(&data);
```
instead of
```rust
let model = libmf::Model::new();
model.factors = 20;
model.fit(&data);
```
## History
View the [changelog](https://github.com/ankane/libmf-rust/blob/master/CHANGELOG.md)