Naive math functions and num-trait impls

This commit is contained in:
Renar Narubin
2021-11-08 17:05:53 -08:00
parent 1bf1f672b3
commit c880b95835

View File

@@ -5,6 +5,7 @@ use core::{
cmp, fmt,
intrinsics::{fadd_fast, fdiv_fast, fmul_fast, frem_fast, fsub_fast},
iter::{Product, Sum},
num::FpCategory,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
};
@@ -265,6 +266,259 @@ macro_rules! impl_fmt {
}
}
#[cfg(feature = "num-traits")]
macro_rules! impl_num_traits {
($fast_ty:ident, $base_ty:ident) => {
impl num_traits::One for $fast_ty {
#[inline(always)]
fn one() -> Self {
Self::ONE
}
#[inline]
fn is_one(&self) -> bool {
self.freeze_raw() == 1.0
}
}
impl num_traits::Zero for $fast_ty {
#[inline(always)]
fn zero() -> Self {
Self::ZERO
}
#[inline]
fn is_zero(&self) -> bool {
self.freeze_raw() == 0.0
}
}
impl num_traits::Num for $fast_ty {
type FromStrRadixErr = <$base_ty as num_traits::Num>::FromStrRadixErr;
fn from_str_radix(str: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> {
Ok(<$fast_ty>::new(
<$base_ty as num_traits::Num>::from_str_radix(str, radix)?,
))
}
}
impl num_traits::ToPrimitive for $fast_ty {
forward_freeze_ty! {
$fast_ty, $base_ty
fn to_isize(&self) -> Option<isize> ;
fn to_i8(&self) -> Option<i8> ;
fn to_i16(&self) -> Option<i16> ;
fn to_i32(&self) -> Option<i32> ;
fn to_i64(&self) -> Option<i64> ;
fn to_i128(&self) -> Option<i128> ;
fn to_usize(&self) -> Option<usize> ;
fn to_u8(&self) -> Option<u8> ;
fn to_u16(&self) -> Option<u16> ;
fn to_u32(&self) -> Option<u32> ;
fn to_u64(&self) -> Option<u64> ;
fn to_u128(&self) -> Option<u128> ;
fn to_f32(&self) -> Option<f32> ;
fn to_f64(&self) -> Option<f64> ;
}
}
impl num_traits::NumCast for $fast_ty {
#[inline]
fn from<N: num_traits::ToPrimitive>(n: N) -> Option<Self> {
Some(<$fast_ty>::new(<$base_ty as num_traits::NumCast>::from(n)?))
}
}
/// Because inf and nan are prohibited, the `fast_fp` types correspond more to the `Real`
/// trait than the `Float` trait. However in practice some libs require a Float bound when
/// they could really use a Real, which would restrict using the `fast_fp` types.
impl num_traits::Float for $fast_ty {
/// Panics because NaN values are not supported
#[inline]
fn nan() -> Self {
panic!(concat!(
stringify!($fast_ty),
" does not support NaN values"
));
}
/// Panics because infinite values are not supported
///
/// Consider using [`max_value`](num_traits::Float::max_value) as appropriate instead
#[inline]
fn infinity() -> Self {
panic!(concat!(
stringify!($fast_ty),
" does not support infinite values. Consider using `max_value` for comparisons"
));
}
/// Panics because infinite values are not supported
///
/// Consider using [`min_value`](num_traits::Float::min_value) as appropriate instead
#[inline]
fn neg_infinity() -> Self {
panic!(concat!(
stringify!($fast_ty),
" does not support infinite values. Consider using `min_value` for comparisons"
));
}
#[inline]
fn neg_zero() -> Self {
-Self::ZERO
}
#[inline]
fn min_value() -> Self {
$fast_ty::MIN
}
#[inline]
fn min_positive_value() -> Self {
$fast_ty::MIN_POSITIVE
}
#[inline]
fn max_value() -> Self {
$fast_ty::MAX
}
#[inline]
fn epsilon() -> Self {
<$fast_ty>::new($base_ty::EPSILON)
}
#[inline]
fn is_nan(self) -> bool {
false
}
#[inline]
fn is_infinite(self) -> bool {
false
}
#[inline]
fn is_finite(self) -> bool {
true
}
forward_self! {
$fast_ty, $base_ty
fn is_normal(self) -> bool;
fn classify(self) -> FpCategory;
fn floor(self) -> Self;
fn ceil(self) -> Self;
fn round(self) -> Self;
fn trunc(self) -> Self;
fn fract(self) -> Self;
fn abs(self) -> Self;
fn signum(self) -> Self;
fn is_sign_positive(self) -> bool;
fn is_sign_negative(self) -> bool;
fn mul_add(self, a: Self, b: Self) -> Self;
fn recip(self) -> Self;
fn powi(self, n: i32) -> Self;
fn powf(self, n: Self) -> Self;
fn sqrt(self) -> Self;
fn exp(self) -> Self;
fn exp2(self) -> Self;
fn ln(self) -> Self;
fn log(self, base: Self) -> Self;
fn log2(self) -> Self;
fn log10(self) -> Self;
fn max(self, other: Self) -> Self;
fn min(self, other: Self) -> Self;
fn cbrt(self) -> Self;
fn hypot(self, other: Self) -> Self;
fn sin(self) -> Self;
fn cos(self) -> Self;
fn tan(self) -> Self;
fn asin(self) -> Self;
fn acos(self) -> Self;
fn atan(self) -> Self;
fn atan2(self, other: Self) -> Self;
fn sin_cos(self) -> (Self, Self);
fn exp_m1(self) -> Self;
fn ln_1p(self) -> Self;
fn sinh(self) -> Self;
fn cosh(self) -> Self;
fn tanh(self) -> Self;
fn asinh(self) -> Self;
fn acosh(self) -> Self;
fn atanh(self) -> Self;
fn to_degrees(self) -> Self;
fn to_radians(self) -> Self;
}
forward_freeze_self! {
$fast_ty, $base_ty
#[allow(deprecated)]
fn abs_sub(self, other: Self) -> Self;
}
#[inline]
fn integer_decode(self) -> (u64, i16, i8) {
<$base_ty as num_traits::Float>::integer_decode(self.freeze_raw())
}
}
};
}
macro_rules! forward_freeze_self {
($fast_ty:ident, $base_ty:ident
$(
$(#[$attr:meta])*
$vis:vis fn $fn_name:ident (self $(, $arg:ident : Self)* ) -> Self ;
)*) => {
$(
$(#[$attr])*
#[inline]
$vis fn $fn_name(self $(, $arg : Self)*) -> Self {
<$fast_ty>::new(<$base_ty>::$fn_name(self.freeze_raw() $(, $arg.freeze_raw())* ))
}
)*
};
}
#[cfg(feature = "num-traits")]
macro_rules! forward_freeze_ty {
($fast_ty:ident, $base_ty:ident
$(
$(#[$attr:meta])*
$vis:vis fn $fn_name:ident (&self) -> $ret_ty:ty ;
)*) => {
$(
$(#[$attr])*
#[inline]
$vis fn $fn_name(&self) -> $ret_ty {
<$base_ty>::$fn_name(&self.freeze_raw())
}
)*
}
}
#[cfg(feature = "num-traits")]
macro_rules! forward_self {
($fast_ty:ident, $base_ty:ident
$(
$(#[$attr:meta])*
$vis:vis fn $fn_name:ident (self $(, $arg:ident : $arg_ty:ty)* ) -> $ret_ty:ty ;
)*) => {
$(
$(#[$attr])*
#[inline]
$vis fn $fn_name(self $(, $arg : $arg_ty)*) -> $ret_ty {
<$fast_ty>::$fn_name(self $(, $arg)* )
}
)*
};
}
macro_rules! impls {
($fast_ty:ident, $base_ty: ident) => {
impl $fast_ty {
@@ -308,6 +562,106 @@ macro_rules! impls {
// every bit pattern is valid in float
unsafe { inner.assume_init() }
}
// TODO migrate these to native implementations to freeze less and fast-math more
forward_freeze_self! {
$fast_ty, $base_ty
pub fn abs(self) -> Self;
pub fn acos(self) -> Self;
pub fn acosh(self) -> Self;
pub fn asin(self) -> Self;
pub fn asinh(self) -> Self;
pub fn atan(self) -> Self;
pub fn atan2(self, other: Self) -> Self;
pub fn atanh(self) -> Self;
pub fn cbrt(self) -> Self;
pub fn ceil(self) -> Self;
pub fn clamp(self, min: Self, max: Self) -> Self;
pub fn copysign(self, sign: Self) -> Self;
pub fn cos(self) -> Self;
pub fn cosh(self) -> Self;
pub fn div_euclid(self, rhs: Self) -> Self;
pub fn exp(self) -> Self;
pub fn exp2(self) -> Self;
pub fn exp_m1(self) -> Self;
pub fn floor(self) -> Self;
pub fn fract(self) -> Self;
pub fn hypot(self, other: Self) -> Self;
pub fn ln(self) -> Self;
pub fn ln_1p(self) -> Self;
pub fn log(self, base: Self) -> Self;
pub fn log10(self) -> Self;
pub fn log2(self) -> Self;
pub fn max(self, other: Self) -> Self;
pub fn min(self, other: Self) -> Self;
pub fn mul_add(self, a: Self, b: Self) -> Self;
pub fn powf(self, n: Self) -> Self;
pub fn recip(self) -> Self;
pub fn rem_euclid(self, rhs: Self) -> Self;
pub fn round(self) -> Self;
pub fn signum(self) -> Self;
pub fn sin(self) -> Self;
pub fn sinh(self) -> Self;
pub fn sqrt(self) -> Self;
pub fn tan(self) -> Self;
pub fn tanh(self) -> Self;
pub fn to_degrees(self) -> Self;
pub fn to_radians(self) -> Self;
pub fn trunc(self) -> Self;
}
#[inline]
pub fn powi(self, n: i32) -> Self {
<$fast_ty>::new(self.freeze_raw().powi(n))
}
#[inline]
pub fn sin_cos(self) -> (Self, Self) {
let (sin, cos) = self.freeze_raw().sin_cos();
(<$fast_ty>::new(sin), <$fast_ty>::new(cos))
}
#[inline]
pub fn classify(self) -> FpCategory {
// NaN and infinity should not be presented as possibilities to users, even if
// freeze ends up producing it. Results are unspecified, so Normal is just as valid
// as any other answer
match self.freeze_raw().classify() {
FpCategory::Nan | FpCategory::Infinite => FpCategory::Normal,
category => category
}
}
#[inline]
pub fn is_sign_negative(self) -> bool {
// must freeze to keep poison out of bool branching
self.freeze_raw().is_sign_negative()
}
#[inline]
pub fn is_sign_positive(self) -> bool {
// must freeze to keep poison out of bool branching
self.freeze_raw().is_sign_positive()
}
#[inline]
pub fn is_normal(self) -> bool {
self.classify() == FpCategory::Normal
}
#[inline]
pub fn is_subnormal(self) -> bool {
self.classify() == FpCategory::Subnormal
}
/// The smallest finite value
pub const MIN: $fast_ty = <$fast_ty>::new($base_ty::MIN);
/// The smallest positive value
pub const MIN_POSITIVE: $fast_ty = <$fast_ty>::new($base_ty::MIN_POSITIVE);
/// The largest finite value
pub const MAX: $fast_ty = <$fast_ty>::new($base_ty::MAX);
}
impl_fmt! {
@@ -454,15 +808,19 @@ macro_rules! impls {
}
}
#[inline]
fn min(self, other: $fast_ty) -> $fast_ty {
<$fast_ty>::min(self, other)
}
#[inline]
fn max(self, other: $fast_ty) -> $fast_ty {
<$fast_ty>::max(self, other)
}
#[inline]
fn clamp(self, min: $fast_ty, max: $fast_ty) -> $fast_ty {
// TODO implement in terms of min/max,
// TODO also implement min/max (intrinsics? we don't want branches)
<$fast_ty>::new($base_ty::clamp(
self.freeze_raw(),
min.freeze_raw(),
max.freeze_raw(),
))
<$fast_ty>::clamp(self, min, max)
}
}
@@ -481,6 +839,9 @@ macro_rules! impls {
<$fast_ty>::new(from)
}
}
#[cfg(feature = "num-traits")]
impl_num_traits! { $fast_ty, $base_ty }
};
}